

Structural Analysis Report

For

Ground Mount Photovoltaic System

At

The Logan Residence 8405 Mill Station Rd Sebastopol, CA 95472

Digitally sealed by RJM on 2/22/22

Designed in Accordance with CBC 2019, ASCE 7-16, NDS 2018

Date: 2/22/22 Job #: S22-1228 E.O.R.: Ryan McPherson, P.E. 9240 Limonite Ave, Jurupa Valley, CA 92509 Mobile: (909) 569-2244 Email: ryan@mcpherson.engineering

Table Of Contents

Project Info & Gravity Loads	3
Pipe Beam Check	4
Seismic Design	5
Wind Design	6
Column Check	7
Footing Design	8
Summary	9

Project Info

Location:

8405 Mill Station Rd Sebastopol, CA 95472

Ground Mount Information:

L _{column} =	7.666667 ft.	column to column length
$W_{column} =$	9.00 ft.	column to column width
L _{overhang} =	1.33 ft.	max. length of overhang
H _{column} =	68.00 in.	max. height of column
$\emptyset_{tilt} =$	20.00 deg.	max. angle of frame tilt

P.V. Array Info:

Model = JK	M405M-72HL-V	Lattitude =	38.411260
Height of Panel =	79.06 in.	Longitude =	-122.853642
Width of Panel =	39.45 in.	S _s =	1.500
Area of Panel =	21.7 ft. ²	S ₁ =	0.600
Number of Panels =	30	Exposure Category =	С
Total Area of Array =	649.8 ft. ²	Wind Speed =	100 m.p.h.
rows of racks per panel =	2		

Site Properties:

Gravity Loads

Snow Load (if applicable):

P _g =	0 p.s.f. snow loa	d per AHJ
C _t =	1.1 thermal factor	ASCE 7 Table 7.3-2
C _e =	1.0 exposure factor	ASCE 7 Table 7.3-1
C _{s_N} =	0.9 slope factor with sola	ar (slippery)
I =	1.0 importance factor	ASCE 7 Table 1.5-1
$SL_{N} = 0.7*C_{e}*C_{t}*I*P_{g}*C_{s} =$	0 p.s.f.	ASCE 7 Eq. 7.3-1

Proposed Loads:

Ground Mount Design	Loads:	
Panels =	2.79 p.s.f.	weight of panels including rack system
Misc =	<u>1.2</u> p.s.f.	
DL =	4.00 p.s.f.	maximum weight of solar modules and rack system
LL =	0.0 p.s.f.	Live load
SL _N =	0.00 p.s.f.	Snow load on ground mount (if applicable)
WL=	20.3 p.s.f.	Wind load

PIPE BEAM CHECK

Beam properties

Beam Size = 2	' STD Steel Pipe		
Trib. =	5.83 ft	A =	1.02 in ²
L _{beam} =	7.67 ft	E =	29000 ksi
		Z =	0.71 in ³
$F_y =$	35 ksi	I =	0.63 in^4
W _{self} =	3.66 plf		

Load Combinations:

LC1 = Trib. * 1.4DL + 1.4W _{self} =	37.77 plf
LC3 = Trib. * $(1.2DL + 0.5WL + 1.6SL) + 1.2W_{self} =$	91.44 plf
LC4 = Trib. * (1.2DL + WL + 0.5SL) + $1.2W_{self}$ =	150.50 plf
LC5 = Trib. * (0.9DL + WL) + 0.9W _{self} =	142.41 plf
W _u =	150.50 plf (governs)

Beam Calculations:

$$V_u = \frac{w_u * L_{beam}}{2} = 576.9 \text{ lbs (simply supported)}$$
$$M_u = \frac{w_u * L_{beam}^2}{8} = 1105.8 \text{ lb-ft (simply supported)}$$

Check for Flexure:

$M_n = F_y^*Z =$	2080 lb-ft	yielding
Ø _b =	0.9	

 $M_{c} = M_{n}^{*} \phi_{b} =$ 1872 lb-ft

Flange Local Buckling: Compact Section; does not apply Web Local Buckling: Compact Section does not apply

$$M_c > M_u$$

$$\frac{M_u}{M_c} =$$
 0.59 < 1.00

2" STD Steel Pipe is OK!

SEISMIC DESIGN

Seismic Design Parameters

Risk Category = 2	Per Table 1-5-1	R = 2	Response Modification Factor (Table 12-2.1)
Site Class = D	Per 11.4.2	I _e = 1	Seismic Importance Factor (Table 1.5-2)
S _s = 1.50	Short Period P.G.A.	p = 1.0	Redundancy Factor
$S_1 = 0.60$	1-Sec Period P.G.A.		
S.D.C. = D	Seismic Design Category Per 1	1.6	
$F_a = 1.00$	Site Coefficient per Table 11.4	-1 ASCE 7-16 S	Supplement #1 Tables used for Fa and Fv
$F_v = 1.50$	Site Coefficient per Table 11.4	-2 (note: secti	on 11.4.8 Exception #2 calc used)
$S_{MS} = S_{DS} F_{a} = 1.50$	Short Period M.C.E. Per Eq. 11	.4-1	
$S_{M1} = S_{D1} F_v = 0.90$	1-Sec Period M.C.E. Per Eq. 11	.4-2	
$S_{DS} = 2/3 (S_{MS}) = 1.00$	Short Period Design Parameter	r Per Eq 11.4-3	
$S_{D1} = 2/3 (S_{M1}) = 0.60$	1-Sec Period Design Paramete	r Per Eq 11.4-4	

Approximate Fundamental Period (Per 12.8.2.1)

$T = C_t (h_n)^x$		per Eq. 12.8-7
h _n =	6.15 ft	
C _t =	0.02	(per table 12.8-2)
x =	0.75	(per table 12.8-2)
T =	0.08 sec	Approximate Fundamental Period
T _L =	8 sec	Long-Period Transition Period per Figure 22-12

Seismic Response Coefficient (Per 12.8.1.1)

$C_{S} = (S_{DS} I_{e})/R = 0.50$	Seismic Response Coefficient Per Eq. 12.8-2
C _{s1} = 1.5*(S _{D1} I _e)/R T = 5.76	Max. Seismic Response Coefficient Per Eq. 12.8-3 if T \leq T _L
$C_{s2} = 0.01$	Min. Seismic Response Coefficient Per Eq. 12.8-5
$C_{s2} = 0.044 \text{ S}_{DS} \text{ I}_{e} = 0.04$	Min. Seismic Response Coefficient Per Eq. 12.8-5
$C_{s3} = 0.5 S_1 I_e / R = 0.15$	Min. Seismic Response Coefficient Per Eq. 12.8-6 if S $_1 \ge 0.6g$
C _S = 0.50	Design Seismic Coefficient

 $S_f = p^*C_s = 0.50$ seismic load factor

WIND DESIGN

Rigid Determination (ASCE 7-16 26.2)

f = 1/T _{max.} =	12.80 Hz
	12.80 > 1.0

approximate fundamental frequency of structure Structure is rigid in accordance with ASCE 7-16

Wind Loads on Other Structures (ASCE 7-16 Section 26 & 29)

V _{ult} =	100 mph	K _{zt} =	1.00 (sec 26.8.2)
Exposure Category =	С	K _z =	0.85 (sec 26.10.1)
G =	0.85	K _d =	0.85 (sec 26.6)
C _f =	1.3	K _e =	0.99 (sec 26.9)
$q_z = 0.00256 K_z K_{zt} K_d K_e V^2$		q _z =	18.34 (eq. 29.3-1) velocity pressure
$P = q_z^* G^* C_f =$	20.26 psf	design wind pressure	

Check Load Combinations

Wind Loads

 $Trib_{column} = 44.7 \text{ ft}^2$

Seismic Loads

89.4 lb	$F_s = S_f^*Trib_{column}^*DL =$	15.3 ft ²	A _f = sin(Ø _{tilt})*Trib _{column} =
89.4 lb	$V_{EQ} = F_s =$	309.7 lb	$F_w = A_f^* p =$
506.6 lb-ft	$M_{EQ} = V_{EQ} * H_{column} =$	309.7 lb	$V_w = F_w =$
		1755 lb-ft	$M_w = V_w * h_{column} =$
		16.66 psf	P _{uplift} = p - 0.9DL =

Load Combos:

LFRD:			
V_{max} = max. of (V_w , V_{EQ}) =	310 lb	Wind Governs	
M_{max} = max. of (M_{EQ} , M_{w}) =	1755 lb-ft	Wind Governs	

ASD Alt. Basic Load Combos: (for soil pressure calculations)

V_{alt} = max. of ($V_{EQ}/1.4$, 0.6 V_{w}) =	186 lb
$M_{alt} = V_{alt}^* H_{column} =$	1053 lb-ft

moment on tall pipe column (at rear)

STEEL COLUMN

Per LRFD, AISC 360, Inverted Pendulum:

2" STD		Column Type =	Pipe
5.67 ft	actual height of column	F _y =	35.00 ksi
2.1	buckling length coeff. (Table C-C2.2)	E _{column} =	29000 ksi
0.9	resistance factor		
		C =	1.19 in
178.8 lb		A =	1.02 in ²
0.0 lb		I _{col} =	0.63 in ⁴
		R =	0.79 in
		S =	0.53 in ³
250 lb	vertical load on column	Z =	0.71 in ³
	2" STD 5.67 ft 2.1 0.9 178.8 lb 0.0 lb 250 lb	2" STD 5.67 ft actual height of column 2.1 buckling length coeff. (Table C-C2.2) 0.9 resistance factor 178.8 lb 0.0 lb 250 lb vertical load on column	2" STD5.67 ftactual height of column $F_y =$ 2.1buckling length coeff. (Table C-C2.2) $E_{column} =$ 0.9resistance factor $C =$ 178.8 lb $A =$ 0.0 lb $I_{col} =$ $R =$ $S =$ 250 lbvertical load on column $Z =$

Column Calculations:

Service Level Loads:

$V_u = V_{max} =$	310 lb	base shear	on column	$M = M_u/1.4 =$	1254 lb-ft
M _u = M _{max} = 1755 lb-ft		bend mom	bend moment on column due to base shear $V = V_u/1.4 = 222$		
$F_e = \frac{\pi^2 E_{co}}{\left(\frac{KL}{r}\right)}$	$\frac{dl}{2} = 878$	32 psi	elastic critical buckling stress (Ec	ı. E3-4)	
$F_{cr_a} = 0.658^{\frac{F_y}{F_e}} * F_{cr_a}$	$F_{y} = 34999$.9 psi	(Eq. E3-2)		
$F_{cr_b} = 0.877 * I$	$F_e = 7701$.8 psi			
	F _{cr} = 7701	.8 psi	buckling stress (chapter E, section	on E3)	
$P_c = \emptyset * F$	_{cr} *A = 7070	.3 lb	design compressive stress in col	umn (chapter H, sec	tion H1, and
			chapter E, section E3)		
M _c = min. of (Ø F _y Z, Ø1.6	6F _y S) = 1871	.6 lb-ft			
Interaction Formula:					

since
$$P_u/P_c = 0.04$$
 Eq. H1-1b per AISC 13, chapter H, section 1
case 1: Eq. H1-1a case 2: Eq. H1-1b
for $P_r/P_c \ge 0.2$ case 1 is not applicable for $P_r/P_c < 0.2$ Use Eq. H1-1b

$$\frac{P_u}{P_c} + \frac{8}{9} * \left(\frac{M_u}{M_c}\right) =$$
 N/A < 1.00 $\frac{P_u}{2 * P_c} + \left(\frac{M_u}{M_c}\right) =$ 0.96 < 1.00

Column OK! Use 2" STD Steel Pipe

OK!

POLE FOOTING DESIGN

Footing Design Loads:						
Pmax = PDL + PLL	178.8 lb		maximum ax	ial loading from above		
q _{allow} =	1500 psf		allowable so	il bearing capacity		
q =	1500 psf		soil bearing of	capacity		
γ_{p} =	200 pcf		passive earth	n pressure		
$\gamma_{\rm c}$ =	150 pcf		unit weight o	of reinforced concrete		
Footing Calculations:						
Footing shape =	round					
w =	12 in		diameter of	footing		
d =	48 in		depth of foo	ting		
d _{ig} =	() in		ignore depth	of passive pressure		
$A_{req} = P_{max}/q_{allow} =$	0.12 ft ²		area of footing required for soil bearing			
A _{proivded} =	0.79 ft ²					
A _{req} =	0.12 ft ²	<	$A_{proivded}$	ОК!	VERTICAL BEARING OK!	
non constrai	ned at ground lev	el (se	e CBC/IBC 180	07.3.2.1)		
V _{alt} =	186 lb					
$M_u = M_{alt} + V_{alt} * d_{ig} =$	1053 lb-ft		service level	base shear and mome	nt	
h =	12 0 in		diagonal dim	ension of footing		
$h = M / V_{\mu} =$	5.7 ft			tht of lateral loading		
$s_{1} = 2\gamma (d/3) =$	533 nsf		enective height of lateral loading			
$A = 2.34 * V/S_1 * b =$	11.65 in		allowable lat	eral soil bearing pressu	ure (per CBC/IBC table 1806.2)	
$d_{max} = \frac{A}{2}(1 + 1)$	$436(\frac{h}{h})+1$,	
$a_{req} = \frac{1}{2}$	(A) + 1		depth requir	ed to resist lateral load	ling	
d _{req} =	35.8 in <		d =	48.0 in	DEPTH OK!	
check uplift:						
$P_{uplift} = Trib_{colur}$	_{mn} *P _{uplift} =	745	lb	$\mu_{ m skin}$ =	250.0 psf	
$W_{ftg} = \left(\frac{w}{2}\right)^2 \pi * d *$	* $\gamma_{conc} =$	471	lb	$F_{skin_{\mu}} = w \pi d \mu_{skin} =$	3142 lb	
$\frac{0.9 * W_{ftg} + P_{ftg}}{P_{ftg}}$	· F _{skinµ}	4.79	> 3.00		UPLIFT IS OK!	
' uplifi	t					
USE FOOTING SIZE: 12 IN. DIAM. ROUND x 48 IN. DEEP						

Summary

PIPE BEAM CHECK

2" STD Steel Pipe is OK!

STEEL COLUMN

Column OK! Use 2" STD Steel Pipe

POLE FOOTING DESIGN

VERTICAL BEARING OK! DEPTH OK! UPLIFT IS OK! USE FOOTING SIZE: 12 IN. DIAM. ROUND x 48 IN. DEEP