These documents shall remain with the approved set of plans and documents

FRAMEWORK ENGINEERING

104 Vicksburg St San Francisco, CA 94114

STRUCTURAL REPORT

PROJECT ADDRESS: 22147 Ruoff Rd, Jenner, Ca 95450

MUNICIPALITY: County of Sonoma, Building Division, Santa Rosa, CA 95403

DATE: 13 MAY 2024

STANDARDS USED

2016 ASCE 7 | 2022 CBC | 2018 NDS, SDPWS

PROJECT DESCRIPTION

The project is the new construction of a three-volume inter-connected residential structure. Sloped asymmetric roof framing will be framed with regularly spaced wood framing and exposed glu-lam beam framing. Small steel sections are used at some eaves and overhangs in order to achieve architectural goals.

Wall framing will use wood shearwalls, blocking, shear clips, and holdowns at the main building structure and primary suite — with one prefabricated Simpson Strongwall necessary at the southern wall edge. The sunroom area uses cantilevered HSS columns as the lateral load resolving system. Please see attached Equivalent Lateral Force Procedure that considers each of the three volumes independently.

Basic floor framing will span over the main crawlspace, but below the bedroom some cantilevered steel beam framing and special detailing were required to accommodate an open-space below this volume.

The foundation will use drilled concrete piers and grade beams with the only slab on grade occuring at the screened in porch + entry. Special notes related to arborist and geotechnical instructions are listed on foundation plan sheet.

APPROACH

The following report is an explanation of structural load paths at the above listed address for the proposed construction project. It describes how the demands of the resulting structure are generated, applied, and analyzed, such that proportionately sized structural members can be selected and detailed with appropriate capacity and stiffness. It also sites applicable and appropriate reference standards but starts first with ASCE 7-16 Minimum Design Loads for Buildings and Other Standards.

If there are any questions about the project or the calculation procedure, please feel free to contact us directly.

Dustin Muhn, PE Framework Engineering 415 715–9652

License Number: C82063 Issued: 18 DEC 2013 Renews: 31 MAR 2026

LOAD ASSUMPTIONS

PRIMARY LOAD PATH ASSUMPTIONS

Primary loads, or static loads, will be identified per unit (psf, plf, etc.) and distributed over a structural element by tributary area. Within the ASCE 7-16 Standard, unit loads will be referenced or calculated from Chapters 3-10 and then factored using Chapter 2. Below are the most common unit loads assumed for this project, but specific loads used at each structural element will be described in their respective calculations later in this report.

Roof Load (DL, LL)	15 psf, 20 psf	ASCE 7-16 Chapters 3,4
Floor Load (DL, LL)	15 psf, 40 psf	ASCE 7-16 Chapters 3,4
Deck Load (DL, LL)	15 psf, 60 psf	ASCE 7-16 Chapters 3,4
Snow Load (LL)	not considered	ASCE 7-16 Chapter 7
Rain Load (LL)	not considered	ASCE 7-16 Chapter 8

MOMENTARY LOAD PATH ASSUMPTIONS

Momentary loads, also known as lateral loads or dynamic loads, will be generated by selecting an appropriate analysis and distributing calculated global loads to individual diaphragms and panels. Both seismic loads and wind loads will be considered with the more conservative application of load used to design the structure. The distribution of loads and explanation of analysis selection will follow in this report.

SOIL LOAD ASSUMPTIONS

Per 2015 International Building Code, Table 1806.2 Presumptive Load-Bearing Values, the following default presumptive load bearing values will be used where an accompanying Geotechnical Report does not justify other values.

SOIL PARAMETER	VALUE
SKIN FRICTION [BEDROCK]	750 pcf
END-BEARING	NO CAPACITY
ACTIVE PRESSURE	55 pcf
PASSIVE PRESSURE	350 pcf

SEISMIC ANALYSIS & PARAMETERS

CHOOSE SEISMIC ANALYSIS PROCEDURE

For selection of seismic analysis procedure, this structural report relies on ASCE 7-16 Chapter 11: Seismic Design Criteria for selection of appropriate seismic analysis procedure(s), specifically Section 11.1.3 based on the type of structure or component(s).

USED

Chapter 12: Seismic Design Requirements for Building Structures

Selecting from: "ASCE 7-16 Table 12.6-1 Permitted Analytical Procedures", the Equivalent Lateral Force Procedure will be used (Section 12.8) in lieu of the Simplified Lateral Force Procedure (Section 12.14); the Modal Response Spectrum Analysis (Section 12.9); or the Seismic Response History Procedure (Chapter 16).

NOT USED

Chapter 13: Seismic Design Requirements for Nonstructural Components

Chapter 15: Seismic Design Requirements for Nonbuilding Structures

Chapter 16: Seismic Response History Procedures

Chapter 17: Seismic Design Requirements for Seismically Isolated Structures

Chapter 18: Seismic Design Requirements for Structures with Damping Systems

IDENTIFY SEISMIC PARAMETERS

Primary Lateral Force-Resisting System: Wood Shearwalls

Diaphragm Rigidity: Flexible
Latitude 38.5467°N
Longitude 123.2825°W

PARAMETER	VALUE	REFERENCE
Risk / Occupancy Category		ASCE 7–16 Table 1.5–1
Seismic Importance Factor, $\rm I_e$	1	ASCE 7–16 Table 1.5–2
Site Class	D	ASCE 7-16 Chapter 20
Seismic Design Category	E	ASCE 7–16 Table 11.6–1(2)
S_{DS}	1.909 g	USGS Design Maps Summary
S_1	0.933 g	USGS Design Maps Summary
S_{D1}	1.000 g	USGS Design Maps Summary
Design Coefficients & Factors; R, W_0 , C_d	6.5, 2.5, 2.5, 4	ASCE 7–16 Table 12.2–1
Redundancy Factor, p	1	ASCE 7-16 Section 12.3.4.2
Allowable Story Drift	0.025	ASCE 7–16 Table 12.12–1

Address:

22147 Ruoff Rd Jenner, California

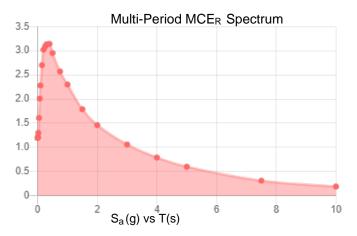
95450

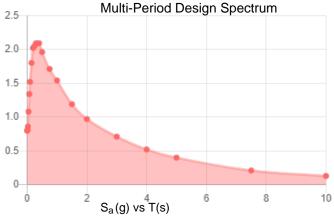
ASCE Hazards Report

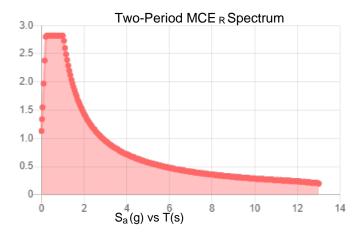
Standard: ASCE/SEI 7-22 Latitude: 38.545802 Risk Category: II Longitude: -123.282415

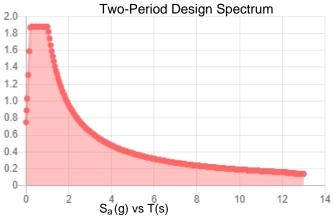
Soil Class: Default Elevation: 359.85214403823414 ft

(NAVD 88)






Seismic


Site Soil Class: Results:	Default			
PGA _M :	1	T _L :	12	
S _{MS} :	2.82	S _s :	2.65	
S _{M1} :	2.86	S_1 :	1.06	
S _{DS} :	1.88	V_{S30} :	260	
S _{D1} :	1.91			

Seismic Design Category: E

 $\ensuremath{\mathsf{MCE}_{\!R}}$ Vertical Response Spectrum Vertical ground motion data has not yet been made available by USGS.

Design Vertical Response Spectrum Vertical ground motion data has not yet been made available by USGS.

Data Accessed: Wed Feb 21 2024

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-22 and ASCE/SEI 7-22 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-22 Ch. 21 are available from USGS.

The ASCE Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE Hazard Tool.

13 MAY 2024

22147 Ruoff Rd Address

Job # R23-102

Engineer Dustin Muhn, PE Structure Type Wood Lateral Systems

Analysis: New Construction Standard: 100%Vb

PRIMARY BEDROOM STRUCTURE

ASCE 7-10 Section 12.8 Equivalent Lateral Force Procedure

Determine global seismic demand on structure.

ASCE 7-10 Section 12.8.3 Vertical Distribution of Seismic Forces

Determine distribution of global seismic demand.

$C_S = \frac{S_{DS}}{\left(\frac{R}{I_e}\right)}$	R (Response Modification Factor Table) 12.2–1	6.5	$T_a = C_t h_n^{\ x}$	Structural Height (See Table Summary)	11.0 ft
$\left(\frac{K}{I}\right)$	S _{DS} (Design Spectral Response) 11.4.4, 11.4.7	1.91		C _t (parameter for Ta) Table 12.8–2	0.02
(*e)	I _e (Importance Factor Table) 12.2–1	1.0	$C = w_x h_x^k$	x (parameter for Ta) Table 12.8-2	0.75
$V_n = C_s W$	C _s (Seismic Response Coefficient) 12.8.1.1	0.2937	$C_{vx} = \frac{x}{\sum_{i=1}^{n} w_i h_i^k}$	Ta (approximate period) 12.8-7	0.12 s
$v_n - c_s vv$	W (See Table Summary)	11686 lbs		k (period dependent exponent) 12.8.3	1.00
	V _n (Nominal Base Shear) 12.8–1	3430 lbs		$\Sigma w_i h_i^{\ k}$ (See Table Summary)	128543 ft-lbs
$V_b = 0.7E V_n \rho$	0.7E (ASD Load Case Magnifier) 2.4.1	0.70	$F_x = C_{vx}V_b$	F_x forces calculated for each diaphragm in	the Table
	p, (Redundancy Factor) 12.3.4.2	1.3		Summary below using respective $C_{\nu x}$ values	5
	Vb (Factored Base Shear)	3121 lbs			

TARLE SUMMARY - VERTICAL DISTRIBITION OF SEISMIC FORCES

	DIAPHRAGMS	Diaphra	gm Mass	Exterior Wall Mass		Interior Wall Mass		W _x	h _x	w _x h _x ^k	ر	F _x	Accum. Shear
DIAI TIINAGI 15		Area	Unit Wt	Area Unit Wt		Area	Area Unit Wt		(ft)	(ft-lbs)	C _{vx}	(lbs)	Load (lbs)
F1	LEVEL 1	430	18	329	12			11686	11.00	128543	1.000	3120	3120
F44 1:		_ J:L /A	CCE 7 C1: 1				- L-16 -6 1L-			b			

1. Effective seismic weight at this diaphragm (ASCE 7 Section 12.7.2) – Includes weight of the diaphragm, top half of the walls below, bottom half of the walls above (or full parapet)

- 2. Average height of diaphragm above grade (ft)
- 3. Effective seismic weight and height contribution to each diaphragm (ft-lbs)
- 4. Distribution of base shear to diaphragms (ASCE 7-10 Equation 12.8-12)
- 5. Story Shear (ASCE 7-10 Equation 12.8-11) rounded to nearest 10 lbs (includes 0.7E and p redundancy factor)
- 6. Accumulated shear at this diaphragm (value may be larger than Vb calculation due to Fx rounding up)

11686	11.00	128543	1.000	3120	
W	h _{max}	$\Sigma w_i h_i^{\ k}$	Total	Total	Г
11686	11 00	128543	1.00	3120	

JOB 22147 RU	0F=		DATE			BY
SHERELA	LL CKES: PR	IMARY BE	15 ELOUM <7	PLOTE E		
		11110			=	
				1 1		
***************************************	V	1	y - Y	-		14 - 14 4 4
	7	***********************				→
		7				
***	- 1	- 1	-	N		
						1
	52	BB		5	51	8 A
(8.5.	F Y		2/	h	X+1)	STETIFICATION
GENDLIH. BZ	isho ibs	ω 3¹-3"	420 p1f	10.4	4368 1hs	
88	1540 105		123 p1f	2'	984 185	
81	1540 165		419 28	10.4	895 165	
ВА	1540 165.	5'.0"	308p1f	9'	2772 155	
				1		
Σ	M. = 0 + 3					
	(VW) = 1	10 x +10		1		
	(Ny/) = 1	vh &				
	V.					

13 MAY 2024

22147 Ruoff Rd Address

Job # R23-102

Engineer Dustin Muhn, PE Structure Type Wood Lateral Systems

Analysis: New Construction Standard: 100%Vb MAIN STRUCTURE

ASCE 7-10 Section 12.8 Equivalent Lateral Force Procedure

Determine global seismic demand on structure.

ASCE 7-10 Section 12.8.3 Vertical Distribution of Seismic Forces

Determine distribution of global seismic demand.

$C_S = \frac{S_{DS}}{\langle P \rangle}$	R (Response Modification Factor Table) 12.2-1	6.5	$T_a = C_t h_n^{\ x}$	Structural Height (See Table Summary)	11.0 ft
$C_s = \frac{DS}{\left(\frac{R}{I_e}\right)}$	S _{DS} (Design Spectral Response) 11.4.4, 11.4.7	1.91		C _t (parameter for Ta) Table 12.8–2	0.02
(*e)	I _e (Importance Factor Table) 12.2–1	1.0	$C = \frac{w_x h_x^k}{1 - $	x (parameter for Ta) Table 12.8–2	0.75
$V_n = C_s W$	C _s (Seismic Response Coefficient) 12.8.1.1	0.2937	$C_{vx} - \frac{1}{\sum_{i=1}^n w_i h_i^k}$	Ta (approximate period) 12.8-7	0.12 s
$v_n - c_s vv$	W (See Table Summary)	29921 lbs		k (period dependent exponent) 12.8.3	1.00
	V _n (Nominal Base Shear) 12.8–1	8790 lbs		$\Sigma w_i h_i^{\ k}$ (See Table Summary)	329135 ft-lbs
$V_b = 0.7E V_n \rho$	0.7E (ASD Load Case Magnifier) 2.4.1	0.70	$F_x = C_{vx}V_b$	F_x forces calculated for each diaphragm in	the Table
	p, (Redundancy Factor) 12.3.4.2	1.3		Summary below using respective C_{vx} values	;
	Vb (Factored Base Shear)	7999 lbs			

TARLE SUMMARY - VERTICAL DISTRIBITION OF SEISMIC FORCES

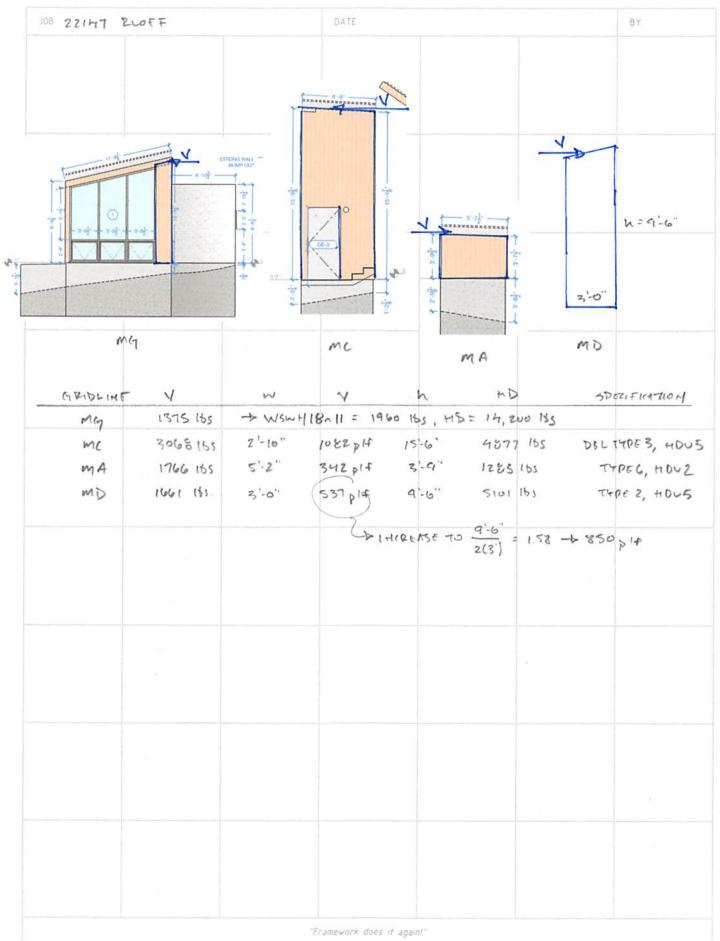
	DIAPHRAGMS	Diaphra	gm Mass	Exterior	Wall Mass	Interior \	Wall Mass	W _x	h _x	w _x h _x ^k	ر	F _x	Accum. Shear
DIAFTIKACI IS		Area	Unit Wt	Area Unit Wt		Area Unit Wt		(lbs)	(ft)	(ft-lbs)	C _{vx}	(lbs)	Load (lbs)
F1	LEVEL 1	941	18	866	15			29921	11.00	329135	1.000	8000	8000
F. ():		1º 1 /A	CCE 7 C 1: 4	10.7.0\		P 1 1				L L			

1. Effective seismic weight at this diaphragm (ASCE 7 Section 12.7.2) – Includes weight of the diaphragm, top half of the walls below, bottom half of the walls above (or full parapet)

- 2. Average height of diaphragm above grade (ft)
- 3. Effective seismic weight and height contribution to each diaphragm (ft-lbs)
- 4. Distribution of base shear to diaphragms (ASCE 7-10 Equation 12.8-12)
- 5. Story Shear (ASCE 7-10 Equation 12.8-11) rounded to nearest 10 lbs (includes 0.7E and p redundancy factor)
- 6. Accumulated shear at this diaphragm (value may be larger than Vb calculation due to Fx rounding up)

29921	11.00	329135	1.000	8000	
W	h _{max}	$\Sigma w_i h_i^{\ k}$	Total	Total	Г
29921	11 00	329135	100	8000	

DIAPHRAGM FLEXIBILITY


Per ASCE 7-10 Section 12.3.1 Diaphragm Flexibility, relative diaphragm stiffnesses shall be considered during horizontal distribution of seismic forces unless it can be idealized as flexible per Section 12.3.1.1 Flexible Diaphragm Condition. This structure meets the following requirements of 12.3.1.1 – and will be idealized with flexible diaphragms:

- b) In one and two-family dwellings
- c) In structures of light-frame construction where 1) Topping of concrete or similar materials is not placed over wood structural panel diaphragms except for nonstructural topping no greater than 1 ½" thick; & 2) Each line of vertical elements of the seismic force-resisting system complies with the allowable story drift of Table 12.12-1

TABLE SUMMARY - HORIZONTAL DISTRIBUTION OF GOVERNING SEISMIC FORCES

,	DIAPHRAGMS	TRANSVERSE GRIDLINES				/ERSE GRIDLINES LONGITUDINAL GRIDLINES		NSVERSE GRIDLINES LONGITUDINAL GRIDLINES		TOTAL LONGITUDINAL GRIDLINES			TOTAL
'	DIAPHRAUMS	MA	MC	MD	MG		TOTAL	M4	M2,M3			TOTAL	
F1	LEVEL 1	22%	39%	21%	17%		100%	50%	50%			100%	
F1	LEVEL 1	1795	3119	1688	1398		8000	4000	4000			8000	
	-	-	-			TOTAL	8001		-		TOTAL	8001	

	2002		
108 22147 BUOFF	DATE		BY
SHEARMALL CALCS! MAIN	STRUCTURE LONGITU	DINAL	
		V = 3935 15	
THE WAY	TV Contraction	w = 5'-0" + hz"+54" =	13'-0"
٧,	*	h,= 10'-9"	
		hz = 10-0	
		V = 302 put +> TYPEG	
	D105		
		IM = 0 + 5	
	1	mon = yound	
-		HD= vh	
		HD=3250 15	- HOUR
	мч	11.10	1
		1=3955 165	
		w= 10'+16'=26'	
		h, = 6.625	
,,	V ₂	hz= 12'	
	The same of the sa	N = 151 pit - 574000	
		4. 13. 814	
		5H = 8	
4	14 14 15	[H = 0 + 5 Nysh=yHD HD=Nh= 1812	
		NYON-GIAD	· X.D.
mz	-0.7	HO. VH. 1812	2 To Hood
11.0	M3		
-			
	"Framework does it again!"		

Standard and Balloon Framing on Concrete Foundations

					2,500 psi	Concrete					3,000 psi	Concrete		
Strong-Wall	Panel	Allow		Seismic ³			Wind			Seismic ³			Wind	
High- Strength Wood Shearwall Model No.	Evaluation Height, He (lb.) ⁶	Vertical Load, P (lb.) ⁴	Allowable ASD Shear Load, V (lb.)	Drift at Allowable Shear, ∆ (in.) ⁷	Anchor Tension at Allowable Shear, T (lb.) ¹¹	Allowable ASD Shear Load, V (lb.)	Drift at Allowable Shear, Δ (in.) ⁷	Anchor Tension at Allowable Shear, T (lb.) ¹¹	Allowable ASD Shear Load, V (lb.)	Drift at Allowable Shear, Δ (in.) ⁷	Anchor Tension at Allowable Shear, T (lb.) ¹¹	Allowable ASD Shear Load, V (lb.)	Drift at Allowable Shear, Δ (in.) ⁷	Anchor Tension at Allowable Shear, T (lb.) ¹¹
		1,000	1,300	0.32	13,295	1,670	0.43	17,075	1,300	0.32	13,295	1,670	0.43	17,075
WSWH12x7	78	4,000	1,300	0.32	13,295	1,670	0.43	17,075	1,300	0.32	13,295	1,670	0.43	17,075
		7,500	1,300	0.32	13,295	1,670	0.43	17,075	1,300	0.32	13,295	1,670	0.43	17,075
		1,000	3,795	0.32	23,680	4,470	0.39	27,890	3,795	0.32	23,680	4,470	0.39	27,890
WSWH18x7	78	4,000	3,795	0.32	23,680	4,365	0.38	27,245	3,795	0.32	23,680	4,470	0.39	27,890
		7,500	3,795	0.32	23,680	4,050	0.36	25,285	3,795	0.32	23,680	4,470	0.39	27,890
		1,000	7,450	0.30	33,210	7,795	0.34	34,755	7,450	0.30	33,210	7,795	0.34	34,755
WSWH24x7	78	4,000	7,450	0.30	33,210	7,565	0.33	33,715	7,450	0.30	33,210	7,795	0.34	34,755
		7,500	7,115	0.28	31,715	7,115	0.31	31,715	7,450	0.30	33,210	7,795	0.34	34,755
		1,000	1,030	0.40	12,580	1,325	0.53	16,195	1,030	0.40	12,580	1,325	0.53	16,195
WSWH12x8	93.25	4,000	1,030	0.40	12,580	1,325	0.53	16,195	1,030	0.40	12,580	1,325	0.53	16,195
		7,500	1,030	0.40	12,580	1,325	0.53	16,195	1,030	0.40	12,580	1,325	0.53	16,195
		1,000	3,060	0.39	22,835	3,880	0.52	28,925	3,060	0.39	22,835	3,955	0.53	29,490
WSWH18x8	93.25	4,000	3,060	0.39	22,835	3,650	0.49	27,245	3,060	0.39	22,835	3,955	0.53	29,490
		7,500	3,060	0.39	22,835	3,390	0.46	25,285	3,060	0.39	22,835	3,955	0.53	29,490
		1,000	6,240	0.37	33,240	6,650	0.43	35,430	6,240	0.37	33,240	6,910	0.45	36,815
WSWH24x8	93.25	4,000	6,240	0.37	33,240	6,330	0.41	33,715	6,240	0.37	33,240	6,910	0.45	36,815
		7,500	5,950	0.35	31,715	5,950	0.38	31,715	6,240	0.37	33,240	6,910	0.45	36,815
		1,000	850	0.45	11,750	1,095	0.60	15,145	850	0.45	11,750	1,095	0.60	15,145
WSWH12x9	105.25	4,000	850	0.45	11,750	1,095	0.60	15,145	850	0.45	11,750	1,095	0.60	15,145
	100.20	7,500	850	0.45	11,750	1,095	0.60	15,145	850	0.45	11,750	1,095	0.60	15,145
		1,000	2,575	0.45	21,680	3,325	0.60	27,975	2,575	0.45	21,680	3,325	0.60	27,975
WSWH18x9	105.25	4,000	2,575	0.45	21,680	3,235	0.58	27,245	2,575	0.45	21,680	3,325	0.60	27,975
потполо	100.20	7,500	2,575	0.45	21,680	3,005	0.54	25,285	2,575	0.45	21,680	3,325	0.60	27,975
		1,000	5,150	0.43	30,975	5,890	0.52	35,430	5,150	0.43	30,975	6,120	0.54	36,815
WSWH24x9	105.25	4,000	5,150	0.43	30,975	5,605	0.50	33,715	5,150	0.43	30,975	6,120	0.54	36,815
WOWNE IXO	100.20	7,500	5,150	0.43	30,975	5,275	0.47	31,715	5,150	0.43	30,975	6,120	0.54	36,815
		1,000	700	0.50	10,750	900	0.67	13,855	700	0.50	10,750	900	0.67	13,855
WSWH12x10	117.25	4,000	700	0.50	10,750	900	0.67	13,855	700	0.50	10,750	900	0.67	13,855
WOWIIIZATO	117.20	7,500	700	0.50	10,750	900	0.67	13,855	700	0.50	10,750	900	0.67	13,855
		1,000	2,140	0.50	20,055	2,755	0.67	25,840	2,140	0.50	20,055	2,755	0.67	25,840
WSWH18x10	117.25	4,000	2,140	0.50	20,055	2,755	0.67	25,840	2,140	0.50	20,055	2,755	0.67	25,840
VVOVVIIIOXIO	117.20	7,500	2,140	0.50	20,055	2,695	0.65	25,285	2,140	0.50	20,055	2,755	0.67	25,840
		1,000	4,010	0.48	26,860	5,215	0.67	34,935	4,010	0.30	26,860	5,215	0.67	34,935
WSWH24x10	117.25	4,000	4,010	0.48	26,860	5,030	0.64	33,715	4,010	0.48	26,860	5,215	0.67	34,935
W3W1124X10	117.23	7,500		0.48	26,860	4,735	0.61	31,715	4,010	0.48	26,860		0.67	
			4,010	0.46		765	0.61		595	0.46		5,215	0.67	34,935 12,930
///C/////14 0//4 4	120.05	1,000	595		10,055			12,930			10,055	765		
WSWH12x11	129.25	4,000 7,500	595	0.56	10,055	765 765	0.73	12,930	595	0.56	10,055	765 765	0.73	12,930
		7,500	595	0.56	10,055	765	0.73	12,930	595	0.56	10,055	765	0.73	12,930
\\\(C\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	100.05	1,000	1,960	0.55	20,240	2,520	0.73	26,060	1,960	0.55	20,240	2,520	0.73	26,060
WSWH18x11	129.25	4,000	1,960	0.55	20,240	2,520	0.73	26,060	1,960	0.55	20,240	2,520	0.73	26,060
		7,500	1,960	0.55	20,240	2,445	0.71	25,285	1,960	0.55	20,240	2,520	0.73	26,060
MOMILE 4 7 7	100.05	1,000	4,000	0.54	29,550	4,795	0.68	35,430	4,000	0.54	29,550	4,985	0.70	36,815
WSWH24x11	129.25	4,000	4,000	0.54	29,550	4,565	0.64	33,715	4,000	0.54	29,550	4,985	0.70	36,815
		7,500	4,000	0.54	29,550	4,295	0.60	31,715	4,000	0.54	29,550	4,985	0.70	36,815

See foonotes on p. 15.

13 MAY 2024

22147 Ruoff Rd Address

Job # R23-102

Engineer Dustin Muhn, PE

New Construction Standard: 100%Vb Analysis:

SCREENED PORCH

Determine distribution of global seismic demand.

ASCE 7-10 Section 12.8.3 Vertical Distribution of Seismic Forces

ASCE 7-10 Section 12.8 Equivalent Lateral Force Procedure

Determine global seismic demand on structure.

$C_S = \frac{S_{DS}}{\langle P \rangle}$	R (Response Modification Factor Table) 12.2–1	2.5	$T_a = C_t h_n^{\ x}$	Structural Height (See Table Summary)	11.0 ft
$C_s = \frac{DS}{\left(\frac{R}{I_e}\right)}$	S _{DS} (Design Spectral Response) 11.4.4, 11.4.7	1.91		C _t (parameter for Ta) Table 12.8–2	0.02
(-6)	I _e (Importance Factor Table) 12.2–1	1.0	$C = \frac{w_x h_x^k}{1 + \frac{1}{2} h_x^k}$	x (parameter for Ta) Table 12.8-2	0.75
$V_n = C_s W$	C _s (Seismic Response Coefficient) 12.8.1.1	0.7636	$C_{vx} = \frac{1}{\sum_{i=1}^{n} w_i h_i^k}$	Ta (approximate period) 12.8-7	0.12 s
$v_n - c_S vv$	W (See Table Summary)	7500 lbs		k (period dependent exponent) 12.8.3	1.00
	V _n (Nominal Base Shear) 12.8–1	5730 lbs		$\Sigma w_i h_i^{\ k}$ (See Table Summary)	82500 ft-lbs
$V_b = 0.7E V_n \rho$	0.7E (ASD Load Case Magnifier) 2.4.1	0.70	$F_x = C_{vx}V_b$	F_x forces calculated for each diaphragm in	the Table
	p, (Redundancy Factor) 12.3.4.2	1.3		Summary below using respective C_{vx} values	

5214 lbs

TABLE SUMMARY - VERTICAL DISTRIBUTION OF SEISMIC FORCES

Vb (Factored Base Shear)

	DIAPHRAGMS	Diaphra	gm Mass	Exterior	Wall Mass	Interior \	Wall Mass	W _x	h _x	w _x h _x ^k	۲	F _x	Accum. Shear
'	JIAFTIKAUIIS	Area	Unit Wt	Area	Unit Wt	Area	Unit Wt	(lbs)	(ft)	(ft-lbs)	L _{VX}	(lbs)	Load (lbs)
F1	LEVEL 1	417	18					7500	11.00	82500	1.000	5210	5210
Effectiv	e seismic weight at thi	s diaphragm (A	SCE 7 Section '	2.7.2) – Include	s weight of th	p half of the	W	h _{max}	Σw _i h _i ^k	Total	Total		

walls below, bottom half of the walls above (or full parapet)

- 2. Average height of diaphragm above grade (ft)
- 3. Effective seismic weight and height contribution to each diaphragm (ft-lbs)
- 4. Distribution of base shear to diaphragms (ASCE 7-10 Equation 12.8-12)
- 5. Story Shear (ASCE 7-10 Equation 12.8-11) rounded to nearest 10 lbs (includes 0.7E and p redundancy factor)
- 6. Accumulated shear at this diaphragm (value may be larger than Vb calculation due to Fx rounding up)

7500	11.00	82500	1.000	5210
W	h _{max}	Σw _i h _i ^k	Total	Total
7500	11.00	82500	1.00	5210

08 22	147 RUDFF	- BD		DATE		BY
	SUMBOOM	(4+17	IL EVERED (rocement construction	P :	2.5, D=1.35, Cel=2.5
	u a	p	п	V= 5640 15 AST	> -12=2.0	
	ď	Y 4	p (LOAD DER EN	Lind M
	a	-	p	14	402 15	
			D	41	1410 B	
	0 E	-AH	p			
	4 >	h = 10	367	4Mn = 0.9 Ty	5x, fy = 42 (120") = 3.0"	ks.:
				A WUMMS	SWMIN IN	MIH SPETIFICATION
	7.	1				MIH SPETIFICATION 2.66:14 +155 323x1/4"
	to	1 SE	CLIOH	4	4.46:n	7.32:14 HSS 444 x 5/6"
		CAP:	40218× S	Z=1,2\$ = 502 16 ·	→ USE (2) SDS 1	
		CAP:	40218× S		6,5"× 4,5	wood Screws
		CAP:	40218× S	Z=1,2\$ = 502 16 ·	CIS'X HD TEGULATION SE	FD ANIMOR UPLIFT (APAZ
		CAP:	40218× S	2=1.25 = 502 16 . 8, 240 16-in =	CIS'X HD TEGULATION SE	FD ANIMOR UPLIFT (APAZ
		CAP:	H0216x S	2=1.25 = 502 16 . 8, 240 16-in =	CIS'X HD TEGULATION SE	FD ANIMOR UPLIFT (APAZ
		CAP:	H0216x S	2=1.25 = 502 16 . 8, 240 16-in =	CIS'X HD TEGULATION SE	FD ANIMOR UPLIFT (APAZ

108 22147 RWIFED

SINEDOM LATORAL	ences
8 1	8
8 1 - 1 -	-+

FORCE FULLOWS STIFFMESS. ALL CULLAMS
WILL HAVE EGIAL DRIFT AT HETAMT OF
SHIRTEST COLLAM, DETERMINE THAT WALLET
TO DEVEND LOAD DEMANDS FOR EA COLLAND.
[ALL COLLAMS SAME STAPE]

BY

> Ma = Fr +1 = 112815x5h = 60,880 16:10 = 5 k.ft 5x = Mu/0.9x +16,00015: = 1.471 ix3 K 2.01:108

CULLMAI	нп	DEFLORMON	% . + y2	73	DEFLETTION	E 1/11
,	120"	6.58"	2 %	103 15	0.68	
2	114"	5.64	2.37.	120 15	82.0	
3	103"	4.79"	2.7%	141 15	80.0	
4	105	4.04"	3.2%	167 15	0.68	
5	96"	5.37"	3.9%	201 15	0.68	
6	24,	0.60	21.6%	1128 13	82.6	
7	28	0.74"	17.5%	910-15	0.68	
8	62	0.91"	14.37	745 13	50.68	
9	94"	3.16"	4.1%	214 15	0.64	ş.
10	98	5.58"	3.6 %	189 14	0.68	
11	03.	1. 85	10.87	565 15	0.68	
12	23	2.13"	67.	31115	0,68	
13	loh"	4.25"	37.	158 15	0.68	
14	8.8	z.59 "	5 %	26115	V 8 2.0	

- 1. DEFLOTETION = PL3/SET USING 1000 15 P. L= HT, E=29×106 ps: , I=3.04: 4
- 2. STIFFFIRS RATED OF Y APPLIED AT TOP OF EACH COLMON
- 3. BASED ON BASE STIEND SZIO 15, FORCE MY TOPOF EREM COLUMN.
- 4. DEFLETTION AT THE OF FOLDING F, CHECK ALL VALUES FRUME ATID SATISFY DRIFT.

13 MAY 2024

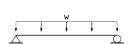
Address 22147 Ruoff Road
Job # R23-102
Engineer Dustin Muhn, PE

LOADING & DEMAND CALCULATIONS

LOADING &	DEMAND CA	LCULATION	S															
	SPANNING N	MEMBER ID		GEOM	1ETRY	DISTRIBUTED LOADING (plf)						DEM	1AND			NOTES:		
Member Schedule	Member Name	Floor Location	Building	Span (ft)	Spacing (in)	DL	LL	Lr	RL	SL	W _u	Load Duration	Moisture Condition	LL Defl.	Total Defl.	Moment (lb-ft)	Shear (lbs)	
01	Roof Framing	S100	Master Bedroom	13.25	16	27	27				53	1.00	DRY	.44 in L/360	.44 in L/360	LOAD (1170	ASE 2 350	
02	Eave Rim	S100	Master Bedroom	13.50		50	50				100	1.00	DRY	.45 in L/360	.45 in L/360	LOAD (2280	CASE 2 680	Uses 2'-6" tributary width
03	Floor Framing	S101	Master Bedroom	11.42	16	27	53				80	1.00	DRY	.38 in L/360	.38 in L/360	LOAD (1300	ASE 2 460	
04	Floor Beam	S101	Master Bedroom	14.58		210	220				430	1.00	DRY	.49 in L/360	.49 in L/360	LOAD (11430	TASE 2 3140	Uses 5'-6" tributary floor width
01	Roof Framing	S100	Main Cabin	9.50	24	40	40				80	1.00	DRY	.32 in L/360	.48 in L/240	LOAD (ASE 2 380	
02	GLULAM MB	S100	Main Cabin	11.00		180	180				360	1.00	DRY	.37 in L/360	.37 in L/360	LOAD 0 5450	ASE 2 1980	Uses 9'-0" tributary width
03	GLULAM MC	S100	Main Cabin	15.00		180	180				360	1.00	DRY	.50 in L/360	.50 in L/360	LOAD (10130	ZASE 2 2700	Uses 9'-0" tributary width
04	GLULAM ME	S100	Main Cabin	14.67		180	180				360	1.00	DRY	.49 in L/360	.49 in L/360	LOAD (9680	ZASE 2 2640	Uses 9'-0" tributary width
05	GLULAM MF	S100	Main Cabin	11.83		160	160	_			320	1.00	DRY	.39 in L/360	.39 in L/360	LOAD (5600	TASE 2 1890	Uses 8'-0" tributary width

	SPANNING	MEMBER ID		GEOM	1ETRY	DISTRIBUTED LOADING (plf)								DEM	1AND			NOTES:
Member Schedule	Member Name	Floor Location	Building	Span (ft)	Spacing (in)	DL	LL	Lr	RL	SL	Wu	Load Duration	Moisture Condition	LL Defl.	Total Defl.	Moment (lb-ft)	Shear (lbs)	
06	HEADER MG	S100	Main Cabin	9.33		80	80				160	1.00	DRY	.31 in L/360	.31 in L/360	LOAD (1740	TASE 2 750	Uses 4'-0" tributary width
07	Floor Framing	S101	Main Cabin	11.50	16	67	53				120	1.00	DRY	.38 in L/360	.38 in L/360	LOAD (CASE 2 690	DL = 50psf including 3" of topping slab
01	Roof Framing	S100	Screen Porch	12.67	16	27	27				53	1.00	DRY	.42 in L/360	.42 in L/360	LOAD (TASE 2 340	
02	All Headers	S100	Screen Porch	4.00		180	180				360	1.00	DRY	.13 in L/360	.13 in L/360	LOAD (TASE 2 720	Uses 9'-0" tributary width

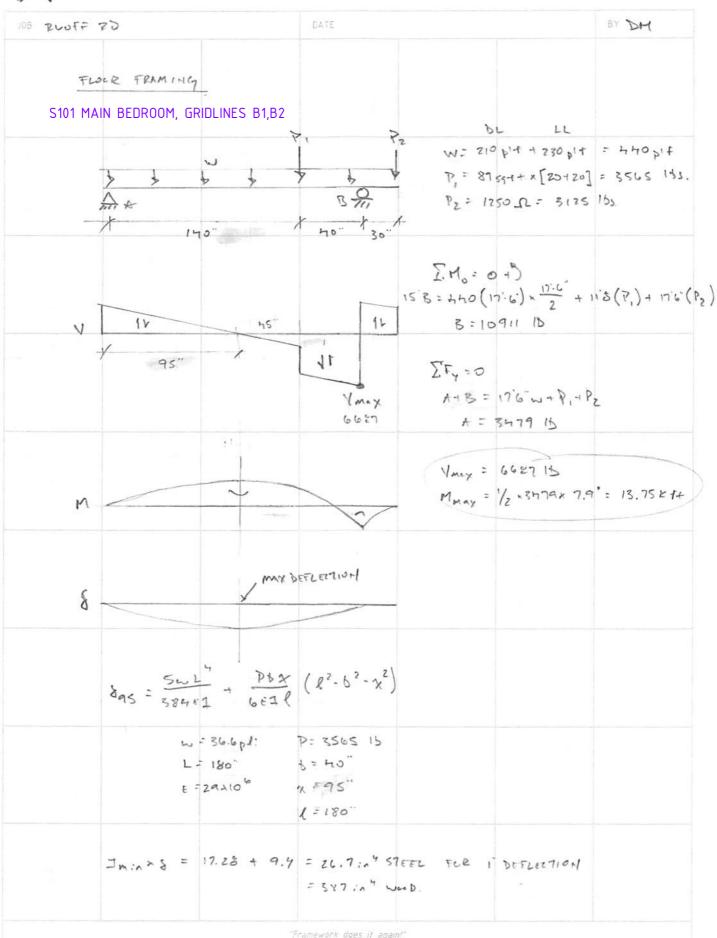
FRAMEWORK ENGINEERING 13 MAY 2024


Table Notes:

Address 22147 Ruoff Road Job # R23-102 Engineer Dustin Muhn, PE

- 1. Adjustment Factors: NDS Table 4.3.1 for Sawn Lumber; NDS Table 5.3.1 for Glulam; NDS Table 8.3.1 for SCL; and NDS Table 7.3.1 for I-Joists.

 Beam Stability Factor, CL (NDS 4.4.1) is assumed to have full depth bridging / blocking at 8' or closer spacing, satisfying all d/b ratios less than 6.


 Flat Use Factor, Cfu (NDS 4.3.7) is conservatively taken as 1.0 for all cases.
- 2. Capacity calculations use simple mechanics for Sawn Lumber and Glulams; and use ICC-ES Reports for Engineered Lumber.

SPECIFICATION & CAPACITY CALCULATIONS

	SPANNING	MEMBER ID		MEMBER Specification			NDS .	Applica	ability	of Ad	justme	nt Fac	tors ¹				CAPA	CITY ²		(increa		AND ering self w	veight)
Member Schedule	Member Name	Floor Location	Building	SPECIFICATION (Size and Grade)	Nominal (psi)	C _D	C _M	C _t	C _L	C _F	Cv	C _{fu}	C _i	Cr	Design (psi)	LL Defl.	Total Defl.	Moment (lb-ft)	Shear (lbs)	LL Defl.	Total Defl.	Moment (lb-ft)	Shear (lbs)
01	Roof Framing	S100	Master Bedroom	1–3/4" x 7–1/4" Microllam LVL 2.0E	Fb = 2600 Fv = 285 E = 2000000	1.00 1.00 -	-	1.00 1.00 1.00	1.00	-	1.18 - -	-	-	1.04	Fb' = 3182 Fv' = 285 E' = 2000000	.17 in L/930	.36 in L/440	4065	2411	.44 in L/360	.44 in L/360	LOAD (1230	TASE 2 370
02	Eave Rim	S100	Master Bedroom	3.5" x 7.25" Microllam LVL 2.0E	Fb = 2600 Fv = 285 E = 2000000	1.00 1.00 -	-	1.00 1.00 1.00	1.00	-	1.07	-	-	1.00	Fb' = 2784 Fv' = 285 E' = 2000000	.17 in L/930	.37 in L/440	7115	4821	.45 in L/360	.45 in L/360	LOAD (2410	CASE 2 710
03	Floor Framing	S101	Master Bedroom	2x10 DF #2	Fb = 900 Fv = 180 E = 1600000		1.00	1.00 1.00 1.00	1.00	1.10 - -	- - -	-	1.00	1.15 - -	Fb' = 1139 Fv' = 180 E' = 1600000	.13 in L/1060	.20 in L/680	2029	1665	.38 in L/360	.38 in L/360	LOAD (1350	CASE 2 470
04	Floor Beam	S101	Master Bedroom								C9x1	3.4								.49 in L/360	.49 in L/360	LOAD (11430	CASE 2 3140
01	Roof Framing	S100	Main Cabin	2×8 DF #2	Fb = 900 Fv = 180 E = 1600000	1.00	1.00 1.00 1.00	1.00	1.00	1.20	- - -	1.00	1.00 1.00 1.00	1.15	Fb' = 1242 Fv' = 180 E' = 1600000	.10 in L/1190	.20 in L/580	1360	1305	.32 in L/360	.48 in L/240	LOAD (930	TASE 2 390
02	GLULAM MB	S100	Main Cabin	3-1/2" x 11-7/8" 24F-V4	Fb = 2400 Fv = 265 E = 1800000			1.00 1.00 1.00	1.00		1.11 - -	- - -	-	1.00	Fb' = 2663 Fv' = 265 E' = 1800000	.07 in L/1960	.14 in L/950	18252	7343	.37 in L/360	.37 in L/360	LOAD (5590	CASE 2 2030
03	GLULAM MC	S100	Main Cabin	3-1/2" x 11-7/8" 24F-V4	Fb = 2400 Fv = 265 E = 1800000		1.00 1.00 1.00		1.00	- - -	1.08	- - -	-	1.00	Fb' = 2581 Fv' = 265 E' = 1800000	.23 in L/770	.48 in L/380	17695	7343	.50 in L/360	.50 in L/360	LOAD (CASE 2 2770
04	GLULAM ME	S100	Main Cabin	3-1/2" x 11-7/8" 24F-V4	Fb = 2400 Fv = 265 E = 1800000	1.00		1.00 1.00 1.00	1.00		1.08	- -	-	1.00	Fb' = 2587 Fv' = 265 E' = 1800000	.21 in L/830	.44 in L/400	17735	7343	.49 in L/360	.49 in L/360	LOAD (CASE 2 2710
05	GLULAM MF	S100	Main Cabin	3-1/2" x 11-7/8" 24F-V4	Fb = 2400 Fv = 265 E = 1800000			1.00 1.00 1.00	1.00	- - -	1.10	- - -	- - -	1.00	Fb' = 2643 Fv' = 265 E' = 1800000	.08 in L/1770	.17 in L/860	18119	7343	.39 in L/360	.39 in L/360	LOAD (5760	CASE 2 1950

	SPANNING 1	MEMBER ID		MEMBER SPECIFICATION				NDS .	Applica	ability	of Adj	ustme	ent Fai	tors ¹				CAPA	CITY ²		(increa	DEM ased consid	AND ering self w	veight)
Member Schedule	Member Name	Floor Location	Building	(Size and Grade)	Nomi	nal (psi)	C _D	C _M	C _t	C_L	C _F	C _v	C _{fu}	C _i	Cr	Design (psi)	LL Defl.	Total Defl.	Moment (lb-ft)	Shear (lbs)	LL Defl.	Total Defl.	Moment (lb-ft)	Shear (lbs)
06	HEADER MG	S100	Main Cabin	6x6 DF #2	Fb = Fv = E =				1.00 1.00 1.00	-	1.00	-	1.00	1.00 1.00 1.00	1.00	Fb' = 900 Fv' = 180 E' = 1600000	.11 in L/1000	.23 in L/480	2080	3630	.31 in L/360	.31 in L/360	LOAD (CASE 2 780
07	Floor Framing	S101	Main Cabin	2×10 DF #2	Fb = Fv = E =		1.00	1.00 1.00 1.00	1.00	-			-	1.00 1.00 1.00	-	Fb' = 1139 Fv' = 180 E' = 1600000	.13 in L/1040	.31 in L/450	2029	1665	.38 in L/360	.38 in L/360	LOAD (2040	CASE 2 710
01	Roof Framing	S100	Screen Porch	2x8 DF #2	Fb = Fv = E =		1.00	1.00 1.00 1.00	1.00	-	1.20	-	1.00		1.15 - -	Fb' = 1242 Fv' = 180 E' = 1600000	.20 in L/750	.42 in L/360	1360	1305	.42 in L/360	.42 in L/360	LOAD (CASE 2 350
02	All Headers	S100	Screen Porch	4x6 DF #2	Fb = Fv = E =		1.00	1.00		-	1.30	-	1.00	1.00 1.00 1.00	1.00	Fb' = 1170 Fv' = 180 E' = 1600000	.01 in L/3590	.03 in L/1780	1720	2310	.13 in L/360	.13 in L/360	LOAD (CASE 2 730

RUOFF	DATE	BY
CAMPILEVERED FLUIR BE	4.00	
S101 MAIN BEDROOM, GRIDLINE	P 7: 4100 15	DLILL FROM FLORE BET
Pin e. Arez	P= 770_A:1	925 16 FROM HOLDOWN
6:6"	5.6" + [Mo=0+5	
V	1 N P = 0	15 P2 = 10 990 15
14		-3847 lb.
	Ymax = 71+ Mmax = 25	15 15 k-f+
m		
Δ	8 max = 303	? (1-1a)
	P:	42" 5220 15 (HO HULDOWH)
		29+10 ps: FUR LYL
		12.7: n4 FER STEFF
		131,7 7012 242

10B RUOFF PD	DATE		BY DM
CAMPILEVER EAVE.	FRAMING D=	650 15	
S100 MAIN BEDROOM, GR			
		Vmx = P = 680 15	
21 11.0	2:0	P, = 440 165	
51 12,00	1	P2 = 1120 15	
	PZ.	Mucy = 5100 lbs-ft	
		$8 \max = \frac{Pa^2}{3 \in I} (1 + a)$	
FOR 8 = 1/2", SOLYE	FILZ SEI	8 = Pu 2 (17a)	
		1,000 000 x Inix 1/2 = C80 15	(902) (144+90)
		Imin = 29 1 4	
115 171117 +	= 277.4		
USE C7x17.7, Jy	- 21.2.71		
		1/mex = P=680 165	
		P. = 151 165	
180	St.	Pz = 830 165	
× 40.	Ψ,		
<u> </u>		8 = 702 (170)	
RZ		347	
S100 MAIN BEDROOM, GRII			
	FUR 8=12" ; SULV	FFUR IMIN 3578= Pu26	(+0+)
		3 = Inn (1/2) = 6	,20 (40²)(150+4
		Imin = 5.5	in 4
USF 17498 ,=	1 = Z1.7: 4		